Jupyter Notebook Binder

Project flow#

LaminDB allows tracking data lineage on the entire project level.

Here, we walk through exemplified app uploads, pipelines & notebooks following Schmidt et al., 2022.

A CRISPR screen reading out a phenotypic endpoint on T cells is paired with scRNA-seq to generate insights into IFN-γ production.

These insights get linked back to the original data through the steps taken in the project to provide context for interpretation & future decision making.

More specifically: Why should I care about data flow?

Data flow tracks data sources & transformations to trace biological insights, verify experimental outcomes, meet regulatory standards, increase the robustness of research and optimize the feedback loop of team-wide learning iterations.

While tracking data flow is easier when it’s governed by deterministic pipelines, it becomes hard when it’s governed by interactive human-driven analyses.

LaminDB interfaces workflow mangers for the former and embraces the latter.

Setup#

Init a test instance:

!lamin init --storage ./mydata
Hide code cell output
✅ saved: User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2024-02-17 11:31:09 UTC)
✅ saved: Storage(uid='FAljW751', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata', type='local', updated_at=2024-02-17 11:31:09 UTC, created_by_id=1)
💡 loaded instance: testuser1/mydata
💡 did not register local instance on lamin.ai

Import lamindb:

import lamindb as ln
from IPython.display import Image, display
💡 lamindb instance: testuser1/mydata

Steps#

In the following, we walk through exemplified steps covering different types of transforms (Transform).

Note

The full notebooks are in this repository.

App upload of phenotypic data #

Register data through app upload from wetlab by testuser1:

# This function mimics the upload of artifacts via the UI
# In reality, you simply drag and drop files into the UI
def run_upload_crispra_result_app():
    ln.setup.login("testuser1")
    transform = ln.Transform(name="Upload GWS CRISPRa result", type="app")
    ln.track(transform)
    output_path = ln.dev.datasets.schmidt22_crispra_gws_IFNG(ln.settings.storage)
    output_file = ln.Artifact(
        output_path, description="Raw data of schmidt22 crispra GWS"
    )
    output_file.save()


run_upload_crispra_result_app()
Hide code cell output
💡 saved: Transform(uid='Ke23CAoAGeN8OZw6', name='Upload GWS CRISPRa result', type='app', updated_at=2024-02-17 11:31:11 UTC, created_by_id=1)
💡 saved: Run(uid='6V2HNlxgjYuokt8MUbDA', run_at=2024-02-17 11:31:11 UTC, transform_id=1, created_by_id=1)

Hit identification in notebook #

Access, transform & register data in drylab by testuser2:

def run_hit_identification_notebook():
    # log in as another user
    ln.setup.login("testuser2")

    # create a new transform to mimic a new notebook (in reality you just run ln.track() in a notebook)
    transform = ln.Transform(name="GWS CRIPSRa analysis", type="notebook")
    ln.track(transform)

    # access the upload artifact
    input_file = ln.Artifact.filter(key="schmidt22-crispra-gws-IFNG.csv").one()

    # identify hits
    input_df = input_file.load().set_index("id")
    output_df = input_df[input_df["pos|fdr"] < 0.01].copy()

    # register hits in output artifact
    ln.Artifact(output_df, description="hits from schmidt22 crispra GWS").save()


run_hit_identification_notebook()
Hide code cell output
💡 saved: Transform(uid='7ZK3QEcbnL6srscJ', name='GWS CRIPSRa analysis', type='notebook', updated_at=2024-02-17 11:31:13 UTC, created_by_id=1)
💡 saved: Run(uid='EAN2uYHQqKvxhYHqJZwz', run_at=2024-02-17 11:31:13 UTC, transform_id=2, created_by_id=1)

Inspect data flow:

artifact = ln.Artifact.filter(description="hits from schmidt22 crispra GWS").one()
artifact.view_lineage()
_images/d2c28606b403b67c191b777c302e85c824e6e7c6a916399475b8593b41efc57b.svg

Sequencer upload #

Upload files from sequencer:

def run_upload_from_sequencer_pipeline():
    ln.setup.login("testuser1")

    # create a pipeline transform
    ln.track(ln.Transform(name="Chromium 10x upload", type="pipeline"))
    # register output files of the sequencer
    upload_dir = ln.dev.datasets.dir_scrnaseq_cellranger(
        "perturbseq", basedir=ln.settings.storage, output_only=False
    )
    ln.Artifact(upload_dir.parent / "fastq/perturbseq_R1_001.fastq.gz").save()
    ln.Artifact(upload_dir.parent / "fastq/perturbseq_R2_001.fastq.gz").save()


run_upload_from_sequencer_pipeline()
Hide code cell output
💡 saved: Transform(uid='iJlrhzBXSR3wYaWJ', name='Chromium 10x upload', type='pipeline', updated_at=2024-02-17 11:31:15 UTC, created_by_id=1)
💡 saved: Run(uid='AoxwotAQbHLcSVYB33Dh', run_at=2024-02-17 11:31:15 UTC, transform_id=3, created_by_id=1)

scRNA-seq bioinformatics pipeline #

Process uploaded files using a script or workflow manager: Pipelines and obtain 3 output files in a directory filtered_feature_bc_matrix/:

def run_scrna_analysis_pipeline():
    ln.setup.login("testuser2")
    transform = ln.Transform(name="Cell Ranger", version="7.2.0", type="pipeline")
    ln.track(transform)
    # access uploaded files as inputs for the pipeline
    input_artifacts = ln.Artifact.filter(key__startswith="fastq/perturbseq").all()
    input_paths = [artifact.stage() for artifact in input_artifacts]
    # register output files
    output_artifacts = ln.Artifact.from_dir(
        "./mydata/perturbseq/filtered_feature_bc_matrix/"
    )
    ln.save(output_artifacts)

    # Post-process these 3 files
    transform = ln.Transform(
        name="Postprocess Cell Ranger", version="2.0", type="pipeline"
    )
    ln.track(transform)
    input_artifacts = [f.stage() for f in output_artifacts]
    output_path = ln.dev.datasets.schmidt22_perturbseq(basedir=ln.settings.storage)
    output_file = ln.Artifact(output_path, description="perturbseq counts")
    output_file.save()


run_scrna_analysis_pipeline()
Hide code cell output
💡 saved: Transform(uid='wMJ3BVHff7AG4X56', name='Cell Ranger', version='7.2.0', type='pipeline', updated_at=2024-02-17 11:31:16 UTC, created_by_id=1)
💡 saved: Run(uid='cYW8B3yGPbAtzy6OPYfh', run_at=2024-02-17 11:31:16 UTC, transform_id=4, created_by_id=1)
❗ this creates one artifact per file in the directory - you might simply call ln.Artifact(dir) to get one artifact for the entire directory
💡 saved: Transform(uid='oYs0uqIx1Te9BlZL', name='Postprocess Cell Ranger', version='2.0', type='pipeline', updated_at=2024-02-17 11:31:16 UTC, created_by_id=1)
💡 saved: Run(uid='ttCM6a78ggLI8aQru9fJ', run_at=2024-02-17 11:31:16 UTC, transform_id=5, created_by_id=1)

Inspect data flow:

output_file = ln.Artifact.filter(description="perturbseq counts").one()
output_file.view_lineage()
_images/48d4f9893e1437da646d7d621c456712ddf32ac3abe49da3f763973a86bbe17c.svg

Integrate scRNA-seq & phenotypic data #

Integrate data in a notebook:

def run_integrated_analysis_notebook():
    import scanpy as sc

    # create a new transform to mimic a new notebook (in reality you just run ln.track() in a notebook)
    transform = ln.Transform(
        name="Perform single cell analysis, integrate with CRISPRa screen",
        type="notebook",
    )
    ln.track(transform)

    # access the output files of bfx pipeline and previous analysis
    file_ps = ln.Artifact.filter(description__icontains="perturbseq").one()
    adata = file_ps.load()
    file_hits = ln.Artifact.filter(description="hits from schmidt22 crispra GWS").one()
    screen_hits = file_hits.load()

    # perform analysis and register output plot files
    sc.tl.score_genes(adata, adata.var_names.intersection(screen_hits.index).tolist())
    filesuffix = "_fig1_score-wgs-hits.png"
    sc.pl.umap(adata, color="score", show=False, save=filesuffix)
    filepath = f"figures/umap{filesuffix}"
    artifact = ln.Artifact(filepath, key=filepath)
    artifact.save()
    filesuffix = "fig2_score-wgs-hits-per-cluster.png"
    sc.pl.matrixplot(
        adata, groupby="cluster_name", var_names=["score"], show=False, save=filesuffix
    )
    filepath = f"figures/matrixplot_{filesuffix}"
    artifact = ln.Artifact(filepath, key=filepath)
    artifact.save()


run_integrated_analysis_notebook()
Hide code cell output
💡 saved: Transform(uid='AQtm7F2wOt1NU7LB', name='Perform single cell analysis, integrate with CRISPRa screen', type='notebook', updated_at=2024-02-17 11:31:19 UTC, created_by_id=1)
💡 saved: Run(uid='a8VX6jvPuDvTmDelC8Op', run_at=2024-02-17 11:31:19 UTC, transform_id=6, created_by_id=1)
WARNING: saving figure to file figures/umap_fig1_score-wgs-hits.png
WARNING: saving figure to file figures/matrixplot_fig2_score-wgs-hits-per-cluster.png

Review results#

Let’s load one of the plots:

# track the current notebook as transform
ln.track()
artifact = ln.Artifact.filter(key__contains="figures/matrixplot").one()
artifact.stage()
Hide code cell output
💡 notebook imports: ipython==8.21.0 lamindb==0.67.3 scanpy==1.9.8
💡 saved: Transform(uid='1LCd8kco9lZU6K79', name='Project flow', short_name='project-flow', version='0', type=notebook, updated_at=2024-02-17 11:31:20 UTC, created_by_id=1)
💡 saved: Run(uid='yuBWg5lEOhmbCdKWwRsu', run_at=2024-02-17 11:31:20 UTC, transform_id=7, created_by_id=1)
PosixUPath('/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/WQoRS8PC9J0awYGdz19G.png')
display(Image(filename=artifact.path))
_images/75b3346852a5508db92b2320e765ce7213171431c66acd8bf2a96f99089d669f.png

We see that the image artifact is tracked as an input of the current notebook. The input is highlighted, the notebook follows at the bottom:

artifact.view_lineage()
_images/547863c9a08b5ee09a1df29197abec1563169ebfbe03fce1059ba1b06b084151.svg

Alternatively, we can also look at the sequence of transforms:

transform = ln.Transform.search("Bird's eye view", return_queryset=True).first()
transform.parents.df()
uid name short_name version type latest_report_id source_code_id reference reference_type created_at updated_at created_by_id
id
4 wMJ3BVHff7AG4X56 Cell Ranger None 7.2.0 pipeline None None None None 2024-02-17 11:31:16.395371+00:00 2024-02-17 11:31:16.395391+00:00 1
transform.view_parents()
_images/cde62a70e52b7a2884d11f041835208f2ad5add1e5260be774606998cefc1b6d.svg

Understand runs#

We tracked pipeline and notebook runs through run_context, which stores a Transform and a Run record as a global context.

Artifact objects are the inputs and outputs of runs.

What if I don’t want a global context?

Sometimes, we don’t want to create a global run context but manually pass a run when creating an artifact:

run = ln.Run(transform=transform)
ln.Artifact(filepath, run=run)
When does an artifact appear as a run input?

When accessing an artifact via stage(), load() or backed(), two things happen:

  1. The current run gets added to artifact.input_of

  2. The transform of that artifact gets added as a parent of the current transform

You can then switch off auto-tracking of run inputs if you set ln.settings.track_run_inputs = False: Can I disable tracking run inputs?

You can also track run inputs on a case by case basis via is_run_input=True, e.g., here:

artifact.load(is_run_input=True)

Query by provenance#

We can query or search for the notebook that created the artifact:

transform = ln.Transform.search("GWS CRIPSRa analysis", return_queryset=True).first()

And then find all the artifacts created by that notebook:

ln.Artifact.filter(transform=transform).df()
uid storage_id key suffix accessor description version size hash hash_type n_objects n_observations transform_id run_id visibility key_is_virtual created_at updated_at created_by_id
id
2 Jiouva2edkD1QATSh3j3 1 None .parquet DataFrame hits from schmidt22 crispra GWS None 18368 Lrl1RWvFXNPR6s-hTFcVNA md5 None None 2 2 1 True 2024-02-17 11:31:14.417826+00:00 2024-02-17 11:31:14.417855+00:00 1

Which transform ingested a given artifact?

artifact = ln.Artifact.filter().first()
artifact.transform
Transform(uid='Ke23CAoAGeN8OZw6', name='Upload GWS CRISPRa result', type='app', updated_at=2024-02-17 11:31:11 UTC, created_by_id=1)

And which user?

artifact.created_by
User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2024-02-17 11:31:15 UTC)

Which transforms were created by a given user?

users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser2).df()
uid name short_name version type reference reference_type created_at updated_at latest_report_id source_code_id created_by_id
id

Which notebooks were created by a given user?

ln.Transform.filter(created_by=users.testuser2, type="notebook").df()
uid name short_name version type reference reference_type created_at updated_at latest_report_id source_code_id created_by_id
id

We can also view all recent additions to the entire database:

ln.view()
Hide code cell output
Artifact
uid storage_id key suffix accessor description version size hash hash_type n_objects n_observations transform_id run_id visibility key_is_virtual created_at updated_at created_by_id
id
10 WQoRS8PC9J0awYGdz19G 1 figures/matrixplot_fig2_score-wgs-hits-per-clu... .png None None None 28814 3ZZrahUWOjhpfAhm5V-BJw md5 None None 6 6 1 True 2024-02-17 11:31:20.612908+00:00 2024-02-17 11:31:20.612932+00:00 1
9 1X3dJSdFEJskDr8QjWZX 1 figures/umap_fig1_score-wgs-hits.png .png None None None 118999 CdbDJlptwDoCY-yCqmXPJw md5 None None 6 6 1 True 2024-02-17 11:31:20.394425+00:00 2024-02-17 11:31:20.394450+00:00 1
8 jidyLGgV1LtLuQyuhj3h 1 schmidt22_perturbseq.h5ad .h5ad AnnData perturbseq counts None 20659936 la7EvqEUMDlug9-rpw-udA md5 None None 5 5 1 False 2024-02-17 11:31:18.633403+00:00 2024-02-17 11:31:18.633434+00:00 1
7 SEsm8yqHOd222Y4Q4TjS 1 perturbseq/filtered_feature_bc_matrix/features... .tsv.gz None None None 6 q8GkOX-4naklXUJxvYW7Zw md5 None None 4 4 1 False 2024-02-17 11:31:16.847479+00:00 2024-02-17 11:31:16.847498+00:00 1
6 sCbd0hm19wN74381HCaT 1 perturbseq/filtered_feature_bc_matrix/matrix.m... .mtx.gz None None None 6 F95NaGTMY0zbPa-G1Yh6Cg md5 None None 4 4 1 False 2024-02-17 11:31:16.846814+00:00 2024-02-17 11:31:16.846832+00:00 1
5 Ap4gErM38PvUmwoU23bQ 1 perturbseq/filtered_feature_bc_matrix/barcodes... .tsv.gz None None None 6 Urr87uQpwZ3SqQXUuYkg5A md5 None None 4 4 1 False 2024-02-17 11:31:16.846088+00:00 2024-02-17 11:31:16.846112+00:00 1
4 wQ6VyEoZ7lPiXL0PRkhP 1 fastq/perturbseq_R2_001.fastq.gz .fastq.gz None None None 6 PxBwdyf4xofaUNk_WCDqwA md5 None None 3 3 1 False 2024-02-17 11:31:15.616698+00:00 2024-02-17 11:31:15.616717+00:00 1
Run
uid transform_id run_at created_by_id report_id environment_id is_consecutive reference reference_type created_at
id
1 6V2HNlxgjYuokt8MUbDA 1 2024-02-17 11:31:11.710922+00:00 1 None None None None None 2024-02-17 11:31:11.711061+00:00
2 EAN2uYHQqKvxhYHqJZwz 2 2024-02-17 11:31:13.950739+00:00 1 None None None None None 2024-02-17 11:31:13.950862+00:00
3 AoxwotAQbHLcSVYB33Dh 3 2024-02-17 11:31:15.171932+00:00 1 None None None None None 2024-02-17 11:31:15.172005+00:00
4 cYW8B3yGPbAtzy6OPYfh 4 2024-02-17 11:31:16.398132+00:00 1 None None None None None 2024-02-17 11:31:16.398205+00:00
5 ttCM6a78ggLI8aQru9fJ 5 2024-02-17 11:31:16.858776+00:00 1 None None None None None 2024-02-17 11:31:16.858849+00:00
6 a8VX6jvPuDvTmDelC8Op 6 2024-02-17 11:31:19.648907+00:00 1 None None None None None 2024-02-17 11:31:19.648983+00:00
7 yuBWg5lEOhmbCdKWwRsu 7 2024-02-17 11:31:20.902692+00:00 1 None None None None None 2024-02-17 11:31:20.902763+00:00
Storage
uid root description type region created_at updated_at created_by_id
id
1 FAljW751 /home/runner/work/lamin-usecases/lamin-usecase... None local None 2024-02-17 11:31:09.555040+00:00 2024-02-17 11:31:09.555058+00:00 1
Transform
uid name short_name version type latest_report_id source_code_id reference reference_type created_at updated_at created_by_id
id
7 1LCd8kco9lZU6K79 Project flow project-flow 0 notebook None None None None 2024-02-17 11:31:20.900121+00:00 2024-02-17 11:31:20.900147+00:00 1
6 AQtm7F2wOt1NU7LB Perform single cell analysis, integrate with C... None None notebook None None None None 2024-02-17 11:31:19.643961+00:00 2024-02-17 11:31:19.643991+00:00 1
5 oYs0uqIx1Te9BlZL Postprocess Cell Ranger None 2.0 pipeline None None None None 2024-02-17 11:31:16.856185+00:00 2024-02-17 11:31:16.856205+00:00 1
4 wMJ3BVHff7AG4X56 Cell Ranger None 7.2.0 pipeline None None None None 2024-02-17 11:31:16.395371+00:00 2024-02-17 11:31:16.395391+00:00 1
3 iJlrhzBXSR3wYaWJ Chromium 10x upload None None pipeline None None None None 2024-02-17 11:31:15.169243+00:00 2024-02-17 11:31:15.169263+00:00 1
2 7ZK3QEcbnL6srscJ GWS CRIPSRa analysis None None notebook None None None None 2024-02-17 11:31:13.946605+00:00 2024-02-17 11:31:13.946624+00:00 1
1 Ke23CAoAGeN8OZw6 Upload GWS CRISPRa result None None app None None None None 2024-02-17 11:31:11.708401+00:00 2024-02-17 11:31:11.708420+00:00 1
User
uid handle name created_at updated_at
id
2 bKeW4T6E testuser2 Test User2 2024-02-17 11:31:13.936633+00:00 2024-02-17 11:31:16.387413+00:00
1 DzTjkKse testuser1 Test User1 2024-02-17 11:31:09.551962+00:00 2024-02-17 11:31:15.161413+00:00
Hide code cell content
!lamin login testuser1
!lamin delete --force mydata
!rm -r ./mydata
✅ logged in with email testuser1@lamin.ai (uid: DzTjkKse)
💡 deleting instance testuser1/mydata
✅     deleted instance settings file: /home/runner/.lamin/instance--testuser1--mydata.env
✅     instance cache deleted
✅     deleted '.lndb' sqlite file
❗     consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/mydata